]> No Title

Definition

If you are just learning equations, or you want to remember school knowledge, topwritingservice.com will help with this! You will be able to read the theoretical part, review formulas and examples, and learn to solve equations on your own.

A quadratic equation in $\mathrm{x}$ is any equation that may be written in the form
$\mathrm{a}{\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{b}\mathrm{x}\mathrm{+}\mathrm{c}\mathrm{=}\mathrm{0}$, where $\mathrm{a}\mathrm{,}$ $\mathrm{b}$, and $\mathrm{c}$ are coefficients and $\mathrm{a}\mathrm{\ne }\mathrm{0}$.

Note that if $\mathrm{a}\mathrm{=}\mathrm{0}$, then the equation would simply be a linear equation, not quadratic.

Examples

${\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{2}\mathrm{x}\mathrm{=}\mathrm{4}$ is a quadratic since it may be rewritten in the form $\mathrm{a}{\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{b}\mathrm{x}\mathrm{+}\mathrm{c}\mathrm{=}\mathrm{0}$ by
applying the Addition Property of Equality and subtracting 4 from both sides of $\mathrm{=}$.

$\mathrm{\left(}\mathrm{2}\mathrm{+}\mathrm{x}\mathrm{\right)}\mathrm{\left(}\mathrm{3}\mathrm{-}\mathrm{x}\mathrm{\right)}\mathrm{=}\mathrm{0}$ is a quadratic since it may be rewritten in the form $\mathrm{a}{\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{b}\mathrm{x}\mathrm{+}\mathrm{c}\mathrm{=}\mathrm{0}$
by applying the Distributive Property to multiply out all terms and then combining
like terms.

${\mathrm{x}}^{\mathrm{2}}\mathrm{\text{-}}\mathrm{3}\mathrm{=}\mathrm{0}$ is a quadratic since it has the form $\mathrm{a}{\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{b}\mathrm{x}\mathrm{+}\mathrm{c}\mathrm{=}\mathrm{0}$ with $\mathrm{b}\mathrm{=}\mathrm{0}$ in this case.

$\mathrm{3}{\mathrm{x}}^{\mathrm{2}}\mathrm{-}\frac{\mathrm{2}}{\mathit{x}}\mathrm{+}\mathrm{4}\mathrm{=}\mathrm{0}$ is not a quadratic since it has the term $\frac{\mathrm{2}}{\mathit{x}}$. The term $\frac{\mathrm{2}}{\mathit{x}}$ is the
same as $\mathrm{2}{\mathrm{x}}^{\mathrm{-}\mathrm{1}}$, and quadratics do not have $\mathrm{x}$ raised to any power other than 1 or 2.

Just remember: Quadratics always have an ${\mathit{x}}^{\mathrm{2}}$ term, possibly an x-term, and

possibly a constant term! If your equation has an ${\mathit{x}}^{\mathrm{2}}$ term or will have an ${\mathit{x}}^{\mathrm{2}}$ term
after multiplying out, it may be a quadratic, provided the other terms fit the form.

The easiest way to solve a quadratic equation is to solve by factoring, if possible.

Here are the steps to solve a quadratic by factoring:

1. Write your equation in the form $\mathrm{a}{\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{b}\mathrm{x}\mathrm{+}\mathrm{c}\mathrm{=}\mathrm{0}$ by applying the Distributive

Properly, Combine Like Terms, and apply the Addition Property of Equality to

move terms to one side of $\mathrm{=}$.

2. Factor your equation by using the Distributive Property and the appropriate

factoring technique. Note: Any type of factoring relies on the Distributive$\mathrm{}$Property.

3. Let each factor $\mathrm{=}\mathrm{0}$ and solve. This is possible because of the Zero Product$\mathrm{}$Law.

Example: Solve $\mathrm{\left(}\mathrm{3}\mathrm{x}\mathrm{+}\mathrm{4}\mathrm{\right)}\mathrm{x}\mathrm{=}\mathrm{7}$

$\mathrm{\left(}\mathrm{3}\mathrm{x}\mathrm{+}\mathrm{4}\mathrm{\right)}\mathrm{x}\mathrm{=}\mathrm{7}$ Given

$\mathrm{3}{\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{4}\mathrm{x}\mathrm{=}\mathrm{7}$ by the Distributive Property

$\mathrm{3}{\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{4}\mathrm{x}\mathrm{-}\mathrm{7}\mathrm{=}\mathrm{0}$ by the Addition Property of Equality

Now, factor $\mathrm{3}{\mathrm{x}}^{\mathrm{2}}\mathrm{+}\mathrm{4}\mathrm{x}\mathrm{-}\mathrm{7}\mathrm{=}\mathrm{0}$

This factors as $\mathrm{\left(}\mathrm{3}\mathrm{x}\mathrm{+}\mathrm{?}\mathrm{\right)}\mathrm{\left(}\mathrm{x}\mathrm{\text{-}}\mathrm{?}\mathrm{\right)}\mathrm{=}\mathrm{0}$ or $\mathrm{\left(}\mathrm{3}\mathrm{x}\mathrm{-}\mathrm{?}\mathrm{\right)}\mathrm{\left(}\mathrm{x}\mathrm{+}\mathrm{?}\mathrm{\right)}\mathrm{=}\mathrm{0}$ where the two unknown
numbers multiply to-7 when we use the Distributive Property to multiply out.

Also the first two terms must multiply out to $\mathrm{3}{\mathrm{x}}^{\mathrm{2}}$. The middle products must add
up to $\mathrm{4}\mathrm{x}$.

$\mathrm{\left(}\mathrm{3}\mathrm{x}\mathrm{+}\mathrm{7}\mathrm{\right)}\mathrm{\left(}\mathrm{x}\mathrm{\text{-}}\mathrm{1}\mathrm{\right)}\mathrm{=}\mathrm{0}$ gives us middle products $\mathrm{7}\mathrm{x}\mathrm{}\mathrm{}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{}\mathrm{-}\mathrm{3}\mathrm{x}$ adding up to $\mathrm{4}\mathrm{x}$.

By the Zero Product Law, we can state
$\mathrm{3}\mathrm{x}\mathrm{+}\mathrm{7}\mathrm{=}\mathrm{0}$ and $\mathrm{x}\mathrm{\text{-}}\mathrm{1}\mathrm{=}\mathrm{0}$.

Solve these two equations by using the Addition Property of Equality and the
Division Property of Equality.

$\mathrm{3}\mathrm{x}\mathrm{+}\mathrm{7}\mathrm{=}\mathrm{0}$

$\mathrm{3}\mathrm{x}\mathrm{}\mathrm{=}\mathrm{}\mathrm{-}\mathrm{7}$

$\mathit{x}\mathrm{}\mathrm{=}\mathrm{}\frac{\mathrm{-}\mathrm{7}}{\mathrm{3}}$

$\mathrm{A}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{}$

$\mathrm{x}\mathrm{-}\mathrm{1}\mathrm{}\mathrm{=}\mathrm{}\mathrm{0}\mathrm{}$

$\mathrm{i}\mathrm{.}\mathrm{e}\mathrm{}\mathrm{}\mathrm{x}\mathrm{=}\mathrm{1}$